000 07136naaaa2202029uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/44811
005 20220714194618.0
020 _abooks978-3-03928-739-0
020 _a9783039287390
020 _a9783039287383
024 7 _a10.3390/books978-3-03928-739-0
_cdoi
041 0 _aEnglish
042 _adc
100 1 _aCavaliere, Sara
_4auth
_91622401
700 1 _aMacagnano, Antonella
_4auth
_9640319
700 1 _aDe Cesare, Fabrizio
_4auth
_91622402
245 1 0 _aDesign and Development of Nanostructured Thin Films
260 _bMDPI - Multidisciplinary Digital Publishing Institute
_c2020
300 _a1 electronic resource (386 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aDue to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by-nc-nd/4.0/
_2cc
_4https://creativecommons.org/licenses/by-nc-nd/4.0/
546 _aEnglish
653 _apolyhydroxibutyrate
653 _agraphene oxide
653 _ananostructured films
653 _airidescence
653 _acarbon nanotube
653 _acorrosion
653 _abiomaterial
653 _apowders
653 _aadsorption energy
653 _aUPD
653 _aplasma irradiation
653 _ametallic nanoparticles
653 _aSTM
653 _ananospiral
653 _aPA-PVD
653 _alight trapping
653 _aruthenium
653 _aaqueous dispersion
653 _aDFT
653 _amonomer synthesis
653 _aultrathin films
653 _agalvanic displacement
653 _aquantum confinement
653 _arod coating
653 _ananocomposite conductive polymers
653 _ananocrystalline cellulose
653 _aphase transition performance
653 _aLa2O3 passivation layer
653 _ainterfacial energy
653 _alamination
653 _alysozyme
653 _ananofibrous membranes
653 _aH2TPP
653 _apoly(dimethylacrylamide)
653 _airon oxides
653 _awater filtration
653 _ahybrid deposition system
653 _aPt thin deposits
653 _areinforced
653 _awires
653 _aself-assembly
653 _acomposite gel
653 _aelectron-phonon coupling
653 _abarrier material
653 _aPAS device
653 _ahydrogel
653 _ananoscratch
653 _athin film
653 _apolymeric matrix
653 _aSEM
653 _asilver
653 _asputtering
653 _aoptical transmittance
653 _awound dressing
653 _aagarose
653 _aXPEEM
653 _aCERAMISĀ®
653 _ahighly oriented pyrolytic graphite
653 _aFeO
653 _aRaman scattering
653 _amodel system
653 _aXPS
653 _aphotocatalysis
653 _aphotovoltaics
653 _aatomic layer deposition
653 _achirality
653 _astructural characterization
653 _apolystyrene
653 _ananofiber
653 _a2D growth
653 _ananostructure
653 _abiomedical
653 _aVOCs selectivity
653 _asilicon thin film
653 _aelectrodeposition
653 _aelectrocatalysis
653 _aSLRR
653 _achemosensor
653 _aCaxCoO2
653 _aspin coating
653 _ananocomposites
653 _aAl2O3
653 _ametal-organic framework
653 _ananocoating of SiOx
653 _aplatinum
653 _asymmetry
653 _aPECVD
653 _athermal analysis
653 _afirst-principles calculation
653 _aelectrical properties
653 _abiomimetic solvent sensors
653 _amodulation structure
653 _ananofibers
653 _amercury vapors adsorbing layer
653 _ahydrogenated amorphous carbon films
653 _aphase transformation
653 _abirefringence
653 _ananostructured back reflectors
653 _amesoporous
653 _asilk sericin
653 _apolymer nanoparticles
653 _aLEEM
653 _aSorpTest
653 _aInAlN
653 _ametamaterial
653 _amicroparticle deposition
653 _aCdTe
653 _ahomogeneity
653 _aluminous transmittance
653 _aLDH
653 _ahybrid material
653 _ascaffolds
653 _aMgO
653 _apolystyrene sphere assisted lithography
653 _aGe surface engineering
653 _aepitaxial growth
653 _aAuNPs
653 _aKr physisorption
653 _aplasma deposition
653 _aReB2/TaN multilayers
653 _avanadium dioxide
653 _aFIB
653 _amask
653 _aself-catalysed
653 _amesoporous graphene
653 _acoating
653 _apost-treatment
653 _aMg alloy
653 _aphotonic nanostructures
653 _aink
653 _adeposition
653 _aMueller matrix
653 _aelectrospinning deposition
653 _apolar semiconductors
653 _azinc oxide
653 _athin films
653 _aFe3O4
653 _aTiO2NPs
653 _amechanical flexibility
653 _ahazardous organic solvents
653 _apermeation
653 _ainterfacial model
653 _amicroscopy
653 _aLEED
653 _aelectrical conductivity
653 _aPVD
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/2269
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/44811
_70
_zDOAB: description of the publication
999 _c3020802
_d3020802