000 04437naaaa2201057uu 4500
001 https://directory.doabooks.org/handle/20.500.12854/76951
005 20220714191831.0
020 _abooks978-3-0365-2332-3
020 _a9783036523316
020 _a9783036523323
024 7 _a10.3390/books978-3-0365-2332-3
_cdoi
041 0 _aEnglish
042 _adc
072 7 _aGP
_2bicssc
100 1 _aZhang, Yongqiang
_4edt
_91615493
700 1 _aRyu, Dongryeol
_4edt
_91615494
700 1 _aZheng, Donghai
_4edt
_91615495
700 1 _aZhang, Yongqiang
_4oth
_91615493
700 1 _aRyu, Dongryeol
_4oth
_91615494
700 1 _aZheng, Donghai
_4oth
_91615495
245 1 0 _aUsing Remote Sensing Techniques to Improve Hydrological Predictions in a Rapidly Changing World
260 _aBasel, Switzerland
_bMDPI - Multidisciplinary Digital Publishing Institute
_c2021
300 _a1 electronic resource (216 p.)
506 0 _aOpen Access
_2star
_fUnrestricted online access
520 _aRemotely sensed geophysical datasets are being produced at increasingly fast rates to monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative use of these datasets to understand hydrological processes in various climatic and vegetation regimes under anthropogenic impacts has become an important challenge, but with a wide range of research opportunities. The ten contributions in this Special Issue have addressed the following four research topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques. Moreover, the authors have provided broader discussions on how to capitalize on state-of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to enhance their skills in reproducing processes for the fast-changing world.
540 _aCreative Commons
_fhttps://creativecommons.org/licenses/by/4.0/
_2cc
_4https://creativecommons.org/licenses/by/4.0/
546 _aEnglish
650 7 _aResearch & information: general
_2bicssc
_9928234
653 _arainfall monitoring
653 _aremote sensing
653 _arain rate estimation
653 _a5G
653 _amillimeter-wave
653 _aE-band
653 _aLOS-MIMO
653 _aUAV remote sensing
653 _aEphemeral rivers
653 _aflood peak discharge
653 _aincipient motion
653 _aarid ungauged regions
653 _aflash flood
653 _aIntegrated Multi-Satellite Retrievals for Global Precipitation Measurement
653 _aRainfall Triggering Index
653 _aYunnan
653 _aecological water transfer
653 _awetland vegetation ecosystem
653 _asurface and groundwater interaction
653 _anorthwestern China
653 _aWRF-3DVar data assimilation
653 _acoupled atmospheric-hydrologic system
653 _arainfall-runoff prediction
653 _alumped Hebei model
653 _agrid-based Hebei model
653 _aWRF-Hydro modeling system
653 _aevapotranspiration
653 _amodel
653 _aSWAT
653 _acalibration
653 _aregression
653 _aSierra Nevada
653 _aflux tower
653 _awater limitation
653 _avapor pressure deficit
653 _adouble-mass analysis
653 _acoefficient of variability
653 _aseasonal ARIMA
653 _aMK-S trend analysis
653 _aevaporation
653 _aLAI
653 _aNDVI
653 _aurban ecosystem
653 _asponge city
653 _aPML-V2
653 _aPenman-Monteith equation
653 _aSentinel-2
653 _aassimilation frequency
653 _adata assimilation
653 _aWRF-3DAVR
653 _aradar reflectivity
653 _arainfall forecast
653 _aurban flood
653 _adesign rainfall
653 _aungauged drainage basin
653 _aRainyDay
653 _aIDF formula
653 _ahydrological prediction
653 _aclimate change
653 _aland use change
856 4 0 _awww.oapen.org
_uhttps://mdpi.com/books/pdfview/book/4542
_70
_zDOAB: download the publication
856 4 0 _awww.oapen.org
_uhttps://directory.doabooks.org/handle/20.500.12854/76951
_70
_zDOAB: description of the publication
999 _c3014556
_d3014556